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Motivation

Neurorehabilitation devices can be used to help patients restore the lost mobil-
ity of upper-body limbs caused, e.g., by a spinal cord injury or a stroke. Given
the long calibration sessions and decrease in decoding performance, the devel-
opment of systems that adapt to the individual patient’s needs is of particular
relevance. Error-related potentials (ErrPs) are elicited in the human brain as a

consequence of both self-made and external system errors [1]. Different experi-
mental paradigms can be used to generate such signals, and the ErrPs provide a
convenient source of feedback to improve brain-machine interfaces (BMIs) with
no extra workload for the subject [2]. However, their effective use depends on
their accurate detection, which is a limitation in current ErrP-based BMIs.
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EEG devices: Brain Products Xpress Twist: 32 active dry
channels | Neuroelectrics Enobio: 8 gel-based channels

Subjects: 6 participants (3 male, 30.2 ± 4.6)

Datasets: 2 sessions of 10 runs with 120 trials each

Data Preprocessing
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3. Notch and [1-20] Hz
bandpass FIR filters
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5. Common-average
re-referencing

6. Baseline correction
[-0.2-0]s

Results

Overall grand averages at Cz: dry (left) and wet (right). ErrPs difference
(error minus correct) grand averages at Cz combined (right). Measured ErrPs
present waveshapes consistent with other studies [3].

ErrPs signal variability

Single-trial analysis of the measured ErrPs highlights both within- and inter-
subjects variability in the signal.

Outlook

The specified protocol can be used to elicit a prominent interaction ErrPs but
variability among subjects is still present. Factors affecting the occurrence of
a significant ErrP signal have to be better understood, as well as the influence
in the adaptation framework.
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