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Background Methods

@ Distributional RL: learn value distribution

nstead of just the expected value of an B Comparison: Three distributional types of critics were implemented on top of

SAC and TD3 in the popular sb3 [6] library. We test each critic with both base

action. Evidence for equivalent mechanism in | |
algorithms using 7, 51 and 100 atoms.

the brain.
B Hyper Parameter Search: Hyper parameters were tuned separately for each

algorithm, parameterization and number of atoms using optuna [7] on the
hardest task from the set we selected (humanoid). In order to isolate the effects

& Distributional algorithms have empirically
proven to be significant improvements over

their non-distributional equivalents, e.g. [1]. .
; eg 1] of varying the number of atoms the same hyperparameters were used across

@ Main areas of variation among DRL eallitane

algorithms: B Evaluation: each algorithm was trained 10 times in each setting. Each

evaluation was done determi- nistically averaged over 5 episodes. Plots show the

mean and std of those values over the 10 trainings. Humanoid (top) and Ant
B (pseudo-) metric used to measure distance environments (bottom).

B representation/parameterization of
distributions

between distributions

@ Several significant parameterizations were
introduced based on DQN:
. Categorical [1]
. Quantile Regression |2}
. Implicit Quantile Networks [3]

. Fully Parameterized Quantile Function [4]
Maximum Mean Discrepancy DQN [5]

@ In this work options 2 to 4 are compared in

Results - Preliminary!
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the continuous action setting
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on Reinforcement Learning,”, 2017. E 1000 | IQN  [1112% 218% 39 54
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for Distributional Reinforcement Learning, The results we have so far suggest that the advantages of IQN and FQF do not automatically translate to the continuous action domain: neither the
arXiv:1806.06923 [CS, Stat], Jun. 2018. number of atoms nor the parameterization have a significant impact on the learning performance.
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B tuned learning rates for SAC based algorithms tend to be more than double the equivalent TD3
based optimum.

B SAC based algorithms appear to be less sensitive to choice of hyperparameters than the TD3 based
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