Autonomous robots with limited computational capacity call for control approaches that generate meaning- ful, goal-directed behavior without using a large amount of resources. The attractor dynamics approach to movement generation is a framework that links sensor data to motor commands via coupled dynamical systems that have attractors at behaviorally desired states. The low computational demands leave enough system resources for higher level function like forming a sequence of local goals to reach a distant one. The comparatively high performance of local behavior generation allows the global planning to be relatively simple.
In the present paper, we apply this approach to generate walking trajectories for a small humanoid robot, the Aldebaran Nao, that are goal-directed and avoid obstacles. The sensor information is a single camera in the head of the robot. The limited field of vision is compensated by head movements. The design of the dynamical system for motion generation and the choice of state variable makes a computationally expensive scene representation or local map building unnecessary.