Coming soon: SAMI 2021, January 21-23, 2021
http://conf.uni-obuda.hu/sami2021/final.html
Paper is out!
https://ieeexplore.ieee.org/document/9378663
Abstract
Automation techniques have been widely applied in different industry segments, among others, to increase both productivity and safety. In the mining industry, with the usage of such systems, the operator can be removed from hazardous environments without compromising task execution and it is possible to achieve more efficient and standardized operation. In this work a study case on the application of machine learning algorithms to a mining system example is presented, in which reinforcement learning algorithms were used to solve a control problem. As an example, a machine chain consisting of a Bucket Wheel Excavator, a Belt Wagon and a Hopper Car was used. This system has two material transfer points that need to remain aligned during operation in order to allow continuous material flow. To keep the alignment, the controller makes use of seven degrees of freedom given by slewing, luffing and crawler drives. Experimental tests were done in a simulated environment with two state-of-the-art algorithms, namely Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC). The trained agents were evaluated in terms of episode return and length, as well as alignment quality and action values used. Results show that, for the given task, the PPO agent performs quantitatively and qualitatively better than the SAC agent. However, none of the agents were able to completely solve the proposed testing task.